摘要
摘要
板翅式换热器在工业中应用广泛,在石油化工、汽车、航空航天、空气调节等领域起着举足轻重的作用。板翅式换热器紧凑的结构,高效的换热效率对提高设备或装置的工作效率有重要作用。有利于节约能源,提高热能利用效率,缓解当前紧张的能源局势。随着科学的迅速发展、技术的日益进步,换热器正朝着紧凑化、小型化、轻重量方向发展。与此同时,对发展换热器优化设计的方法与理论也提出了迫切的要求。但由于板翅式换热器传热过程的复杂性,纯粹从理论上推导有关传热公式十分困难。本文在总结前人工作的基础上以平直翅片的板翅式换热器作为研究对象,对板翅式换热器内部翅片与流体的传热机理进行分析,同时对板翅式换热器内部流体的流动和传热特性进行数值计算与模拟。旨在探讨板翅式换热器的工作原理,为板翅式换热器的设计工作提供一定的参考。本文主要内容包括:
1.概述板翅式换热器的结构形式和工作原理。
2.设计一物理模型以供数值模拟和探讨。
3.建立数学模型,对板翅式换热器进行数值模拟。
4.处理模拟数据,分析结果。
5.总结板翅式换热器的数值模拟工作,得出结论。
关键词:
板翅式换热器;设计;数值模拟;传热因子;摩擦因子;湍流模型
板翅式换热器设计理论-控制方程式
七 对流传热问题的数学描写控制方程
7.1 输运方程
设[tex]N[/tex]为流体系统在[tex] t [/tex]时刻所具有的某种物理量,[tex]\xi[/tex]表示单位质量流体所具有的这种物理量。
由此推导出输运方程为:
[tex]\frac{dN}{dt}=\frac{\partial}{\partial t} \int \limits_{CV}\xi \rho d V+\int \limits_{CS}\xi \rho u_{n} dA[/tex] (7-1)
其中[tex]u_{n}[/tex]为速度在微元面法线方向的投影。该式表明,流体某一物理量时间的全变化率等于控制体内这种物理量的时间变化率与经过控制面的这种物理量的净通量之和。
7.2 连续方程(质量守恒方程)
单位质量的流体的质量[tex]\xi=1[/tex],质量为[tex]N=\int \limits_{V}\rho d V=m[/tex]
因为质量守恒,所以有:
[tex]\frac{d N}{d t}=\frac{d m}{d t}=0[/tex]
由(7-1)式可得:
[tex]\frac{\partial}{\partial t}\int \limits_{CV}\rho d V+\int\limits_{CS}\rho u_{n} d A=0[/tex] (7-2)
此即是连续方程的积分形式,其微分形式为:
[tex]\frac{d \rho}{d t}+\mathbf{\rho} div \mathbf{u}=0[/tex] (7-3)
在直角坐标系中表示为:
[tex]\frac{\partial \rho}{\partial t}+\frac{\partial(\rho u)}{\partial x}+\frac{\partial(\rho v)}{\partial y}+\frac{\partial(\rho w)}{\partial z}=0[/tex] (7-4)
7.3 运动方程(动量守恒方程)
单位质量的流体动量为[tex]\xi=u[/tex],流体系统动量为[tex]p=\int \limits_{V}\rho \mathbf{u} d V[/tex],由(7-1)式得:
[tex]\frac{d}{d t}\int \limits_{V}\mathbf{u}\rho d V=\frac{\partial}{\partial t}\int \limits_{CV}\mathbf{u}\rho d V+\int \limits_{CS}\mathbf{u}\rho u_{n}d A[/tex] (7-5)
根据质点系动量定理,流体系统动量的时间变化率等于作用在系统上的外力之和。作用在流体流体微元上的外力有质量力和表面力之分。定义[tex]f[/tex]为作用在单位质量流体上的质量力分布函数,定义[tex]p_{n}[/tex]为作用在单位质量流体上的表面力分布函数。那么运动方程的完整积分表述方式为:
[tex]\frac{\partial}{\partial t}\int \limits_{CV}\mathbf{u}\rho d V+\int \limits_{CS}\mathbf{u}\rho u_{n} d A=\int \limits_{CV}f \rho d V+\int \limits_{CS}p_{n} d A[/tex] (7-6)
[tex]\because[/tex]
[tex]\frac{d}{d t}\int \limits_{V}\mathbf{u}\rho d V=\int \limits_{V}\rho \frac{d \mathbf{u}}{d t} d V[/tex]
又根据奥高定理:
[tex]\int \limits_{CS}p_{n} d A=\int \limits_{CS}\mathbf{n} \cdot P d A=\int \limits_{CV}div \mathbf{P} d V[/tex]
于是式(7-6)变为:
[tex]\int \limits_{CV}(\rho \frac{d \mathbf{u}}{d t}-\rho \mathbf{f}-div \mathbf{P}) d V=0[/tex]
[tex]\therefore[/tex]
[tex]\rho \frac{d \mathbf{u}}{d t}=\rho\mathbf{f}+div\mathbf{P}[/tex] (7-7)
此即是运动方程的微分形式
在直角坐标系中,变为:
[tex]\rho(\frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}+w\frac{\partial u}{\partial z})=\rho f_{x}+\frac{\partial p_{xx}}{\partial x}+\frac{\partial p_{xy}}{\partial y}+\frac{\partial p_{xz}}{\partial z}[/tex]
[tex]\rho(\frac{\partial v}{\partial t}+u\frac{\partial v}{\partial x}+v\frac{\partial v}{\partial y}+w\frac{\partial v}{\partial z})=\rho f_{y}+\frac{\partial p_{yx}}{\partial x}+\frac{\partial p_{yy}}{\partial y}+\frac{\partial p_{yz}}{\partial z}[/tex] (7-8)
[tex]\rho(\frac{\partial w}{\partial t}+u\frac{\partial w}{\partial x}+v\frac{\partial w}{\partial y}+w\frac{\partial w}{\partial z})=\rho f_{z}+\frac{\partial p_{zx}}{\partial x}+\frac{\partial p_{zy}}{\partial y}+\frac{\partial p_{zz}}{\partial z}[/tex]
7.4 N-S方程
由本构方程:
[tex]p_{xx}=-p-\frac{2}{3}\mu div \mathbf{u}+2\mu\frac{\partial u}{\partial x}[/tex]
[tex]p_{yy}=-p-\frac{2}{3}\mu div \mathbf{u}+2\mu\frac{\partial v}{\partial y}[/tex]
[tex]p_{zz}=-p-\frac{2}{3}\mu div \mathbf{u}+2\mu\frac{\partial w}{\partial z}[/tex]
[tex]p_{xy}=p_{yx}=\mu(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x})[/tex]
[tex]p_{zx}=p_{xz}=\mu(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x})[/tex]
[tex]p_{yz}=p_{zy}=\mu(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y})[/tex]
带入式(7-8)得到N-S方程:
[tex]\rho \frac{Du}{Dt}=\rho f_{x}-\frac{\partial p}{\partial x}+\frac{\partial}{\partial x}[\mu(2\frac{\partial u}{\partial x}-\frac{2}{3}div \mathbf{u})]+\frac{\partial}{\partial y}[\mu(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y})]+\frac{\partial}{\partial z}[\mu(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x})][/tex]
[tex]\rho \frac{Dv}{Dt}=\rho f_{y}-\frac{\partial p}{\partial y}+\frac{\partial}{\partial x}[\mu(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y})]+\frac{\partial}{\partial y}[\mu(2\frac{\partial v}{\partial y}-\frac{2}{3}div \mathbf{u})]+\frac{\partial}{\partial z}[\mu(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z})][/tex] (7-9)
[tex]\rho \frac{Dw}{Dt}=\rho f_{z}-\frac{\partial p}{\partial z}+\frac{\partial}{\partial x}[\mu(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x})]+\frac{\partial}{\partial z}[\mu(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z})]+\frac{\partial}{\partial z}[\mu(2\frac{\partial w}{\partial z}-\frac{2}{3}div \mathbf{u})][/tex]
当流体为均质不可压缩常粘度时,N-S方程简化为:
[tex]\rho(\frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}+w\frac{\partial u}{\partial z})=\rho f_{x}-\frac{\partial p}{\partial x}+\mu(\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}+\frac{\partial^{2}u}{\partial z^{2}})[/tex]
[tex]\rho(\frac{\partial v}{\partial t}+u\frac{\partial v}{\partial x}+v\frac{\partial v}{\partial y}+w\frac{\partial v}{\partial z})=\rho f_{y}-\frac{\partial p}{\partial y}+\mu(\frac{\partial^{2}v}{\partial x^{2}}+\frac{\partial^{2}v}{\partial y^{2}}+\frac{\partial^{2}v}{\partial z^{2}})[/tex] (7-10)
[tex]\rho(\frac{\partial w}{\partial t}+u\frac{\partial w}{\partial x}+v\frac{\partial w}{\partial y}+w\frac{\partial w}{\partial z})=\rho f_{z}-\frac{\partial p}{\partial z}+\mu(\frac{\partial^{2}w}{\partial x^{2}}+\frac{\partial^{2}w}{\partial y^{2}}+\frac{\partial^{2}w}{\partial z^{2}})[/tex]
7.5 能量守恒方程
单位质量的流体的能量为[tex] \xi=e+u^{2}/2[/tex],其中[tex]e[/tex]为单位质量流体的热力学能。
则[tex]N=\int \limits_{V}(e+u^{2}/2)\rho d V[/tex],由(7-1)式得:
[tex]\frac{d}{dt}\int \limits_{V}(e+u^{2}/2)\rho d V=\frac{d}{dt}\int \limits_{CV}(e+u^{2}/2)\rho d V+\int \limits_{CS}(e+u^{2}/2)\rho v_{n}d V[/tex] (7-11)
根据能量守恒和转换定律,流体系统中能量的时间全变化率等于作用在系统上的质量力和表面力所作的功率和与外界换热率之和。则得:
[tex]\frac{d}{dt}\int \limits_{V}(e+u^{2}/2)\rho d V=\int \limits_{V}f \rho \mathbf{u} d V+\int \limits_{CA}p_{n} \mathbf{u} d A+Q[/tex] (7-12)
则能量守恒方程积分形式为:
[tex]\frac{d}{dt}\int \limits_{CV}(e+u^{2}/2)\rho d V+\int \limits_{CS}(e+u^{2}/2)\rho v_{n}d V=\int \limits_{V}f \rho \mathbf{u} d V+\int \limits_{CA}p_{n} \mathbf{u} d A+Q[/tex] (7-13)
其微分形式为:
[tex]\frac{\partial \rho T}{\partial t}+\frac{\partial \rho u T}{\partial x}+\frac{\partial \rho v T}{\partial y}+\frac{\partial \rho w T}{\partial z}=\frac{\partial}{\partial x}(\frac{\lambda}{c_{p}}\frac{\partial T}{\partial x})+\frac{\partial}{\partial y}(\frac{\lambda}{c_{p}}\frac{\partial T}{\partial y})+\frac{\partial}{\partial z}(\frac{\lambda}{c_{p}}\frac{\partial T}{\partial z})+Q[/tex] (7-14)
对于不可压缩,常物性屋内热源可简化为:
[tex]\frac{\partial T}{\partial t}+u\frac{\partial T}{\partial x}+v\frac{\partial T}{\partial y}+w\frac{\partial T}{\partial z}=\frac{\lambda}{\rho c_{p}}( \frac{\partial^{2}T}{\partial x^{2}}+\frac{\partial^{2}T}{\partial y^{2}}+\frac{\partial^{2}T}{\partial z^{2}})[/tex] (7-15)