板翅式换热器设计理论-控制方程式
七 对流传热问题的数学描写控制方程
7.1 输运方程
设[tex]N[/tex]为流体系统在[tex] t [/tex]时刻所具有的某种物理量,[tex]\xi[/tex]表示单位质量流体所具有的这种物理量。
由此推导出输运方程为:
[tex]\frac{dN}{dt}=\frac{\partial}{\partial t} \int \limits_{CV}\xi \rho d V+\int \limits_{CS}\xi \rho u_{n} dA[/tex] (7-1)
其中[tex]u_{n}[/tex]为速度在微元面法线方向的投影。该式表明,流体某一物理量时间的全变化率等于控制体内这种物理量的时间变化率与经过控制面的这种物理量的净通量之和。
7.2 连续方程(质量守恒方程)
单位质量的流体的质量[tex]\xi=1[/tex],质量为[tex]N=\int \limits_{V}\rho d V=m[/tex]
因为质量守恒,所以有:
[tex]\frac{d N}{d t}=\frac{d m}{d t}=0[/tex]
由(7-1)式可得:
[tex]\frac{\partial}{\partial t}\int \limits_{CV}\rho d V+\int\limits_{CS}\rho u_{n} d A=0[/tex] (7-2)
此即是连续方程的积分形式,其微分形式为:
[tex]\frac{d \rho}{d t}+\mathbf{\rho} div \mathbf{u}=0[/tex] (7-3)
在直角坐标系中表示为:
[tex]\frac{\partial \rho}{\partial t}+\frac{\partial(\rho u)}{\partial x}+\frac{\partial(\rho v)}{\partial y}+\frac{\partial(\rho w)}{\partial z}=0[/tex] (7-4)
7.3 运动方程(动量守恒方程)
单位质量的流体动量为[tex]\xi=u[/tex],流体系统动量为[tex]p=\int \limits_{V}\rho \mathbf{u} d V[/tex],由(7-1)式得:
[tex]\frac{d}{d t}\int \limits_{V}\mathbf{u}\rho d V=\frac{\partial}{\partial t}\int \limits_{CV}\mathbf{u}\rho d V+\int \limits_{CS}\mathbf{u}\rho u_{n}d A[/tex] (7-5)
根据质点系动量定理,流体系统动量的时间变化率等于作用在系统上的外力之和。作用在流体流体微元上的外力有质量力和表面力之分。定义[tex]f[/tex]为作用在单位质量流体上的质量力分布函数,定义[tex]p_{n}[/tex]为作用在单位质量流体上的表面力分布函数。那么运动方程的完整积分表述方式为:
[tex]\frac{\partial}{\partial t}\int \limits_{CV}\mathbf{u}\rho d V+\int \limits_{CS}\mathbf{u}\rho u_{n} d A=\int \limits_{CV}f \rho d V+\int \limits_{CS}p_{n} d A[/tex] (7-6)
[tex]\because[/tex]
[tex]\frac{d}{d t}\int \limits_{V}\mathbf{u}\rho d V=\int \limits_{V}\rho \frac{d \mathbf{u}}{d t} d V[/tex]
又根据奥高定理:
[tex]\int \limits_{CS}p_{n} d A=\int \limits_{CS}\mathbf{n} \cdot P d A=\int \limits_{CV}div \mathbf{P} d V[/tex]
于是式(7-6)变为:
[tex]\int \limits_{CV}(\rho \frac{d \mathbf{u}}{d t}-\rho \mathbf{f}-div \mathbf{P}) d V=0[/tex]
[tex]\therefore[/tex]
[tex]\rho \frac{d \mathbf{u}}{d t}=\rho\mathbf{f}+div\mathbf{P}[/tex] (7-7)
此即是运动方程的微分形式
在直角坐标系中,变为:
[tex]\rho(\frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}+w\frac{\partial u}{\partial z})=\rho f_{x}+\frac{\partial p_{xx}}{\partial x}+\frac{\partial p_{xy}}{\partial y}+\frac{\partial p_{xz}}{\partial z}[/tex]
[tex]\rho(\frac{\partial v}{\partial t}+u\frac{\partial v}{\partial x}+v\frac{\partial v}{\partial y}+w\frac{\partial v}{\partial z})=\rho f_{y}+\frac{\partial p_{yx}}{\partial x}+\frac{\partial p_{yy}}{\partial y}+\frac{\partial p_{yz}}{\partial z}[/tex] (7-8)
[tex]\rho(\frac{\partial w}{\partial t}+u\frac{\partial w}{\partial x}+v\frac{\partial w}{\partial y}+w\frac{\partial w}{\partial z})=\rho f_{z}+\frac{\partial p_{zx}}{\partial x}+\frac{\partial p_{zy}}{\partial y}+\frac{\partial p_{zz}}{\partial z}[/tex]
7.4 N-S方程
由本构方程:
[tex]p_{xx}=-p-\frac{2}{3}\mu div \mathbf{u}+2\mu\frac{\partial u}{\partial x}[/tex]
[tex]p_{yy}=-p-\frac{2}{3}\mu div \mathbf{u}+2\mu\frac{\partial v}{\partial y}[/tex]
[tex]p_{zz}=-p-\frac{2}{3}\mu div \mathbf{u}+2\mu\frac{\partial w}{\partial z}[/tex]
[tex]p_{xy}=p_{yx}=\mu(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x})[/tex]
[tex]p_{zx}=p_{xz}=\mu(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x})[/tex]
[tex]p_{yz}=p_{zy}=\mu(\frac{\partial v}{\partial z}+\frac{\partial w}{\partial y})[/tex]
带入式(7-8)得到N-S方程:
[tex]\rho \frac{Du}{Dt}=\rho f_{x}-\frac{\partial p}{\partial x}+\frac{\partial}{\partial x}[\mu(2\frac{\partial u}{\partial x}-\frac{2}{3}div \mathbf{u})]+\frac{\partial}{\partial y}[\mu(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y})]+\frac{\partial}{\partial z}[\mu(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x})][/tex]
[tex]\rho \frac{Dv}{Dt}=\rho f_{y}-\frac{\partial p}{\partial y}+\frac{\partial}{\partial x}[\mu(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y})]+\frac{\partial}{\partial y}[\mu(2\frac{\partial v}{\partial y}-\frac{2}{3}div \mathbf{u})]+\frac{\partial}{\partial z}[\mu(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z})][/tex] (7-9)
[tex]\rho \frac{Dw}{Dt}=\rho f_{z}-\frac{\partial p}{\partial z}+\frac{\partial}{\partial x}[\mu(\frac{\partial u}{\partial z}+\frac{\partial w}{\partial x})]+\frac{\partial}{\partial z}[\mu(\frac{\partial w}{\partial y}+\frac{\partial v}{\partial z})]+\frac{\partial}{\partial z}[\mu(2\frac{\partial w}{\partial z}-\frac{2}{3}div \mathbf{u})][/tex]
当流体为均质不可压缩常粘度时,N-S方程简化为:
[tex]\rho(\frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y}+w\frac{\partial u}{\partial z})=\rho f_{x}-\frac{\partial p}{\partial x}+\mu(\frac{\partial^{2}u}{\partial x^{2}}+\frac{\partial^{2}u}{\partial y^{2}}+\frac{\partial^{2}u}{\partial z^{2}})[/tex]
[tex]\rho(\frac{\partial v}{\partial t}+u\frac{\partial v}{\partial x}+v\frac{\partial v}{\partial y}+w\frac{\partial v}{\partial z})=\rho f_{y}-\frac{\partial p}{\partial y}+\mu(\frac{\partial^{2}v}{\partial x^{2}}+\frac{\partial^{2}v}{\partial y^{2}}+\frac{\partial^{2}v}{\partial z^{2}})[/tex] (7-10)
[tex]\rho(\frac{\partial w}{\partial t}+u\frac{\partial w}{\partial x}+v\frac{\partial w}{\partial y}+w\frac{\partial w}{\partial z})=\rho f_{z}-\frac{\partial p}{\partial z}+\mu(\frac{\partial^{2}w}{\partial x^{2}}+\frac{\partial^{2}w}{\partial y^{2}}+\frac{\partial^{2}w}{\partial z^{2}})[/tex]
7.5 能量守恒方程
单位质量的流体的能量为[tex] \xi=e+u^{2}/2[/tex],其中[tex]e[/tex]为单位质量流体的热力学能。
则[tex]N=\int \limits_{V}(e+u^{2}/2)\rho d V[/tex],由(7-1)式得:
[tex]\frac{d}{dt}\int \limits_{V}(e+u^{2}/2)\rho d V=\frac{d}{dt}\int \limits_{CV}(e+u^{2}/2)\rho d V+\int \limits_{CS}(e+u^{2}/2)\rho v_{n}d V[/tex] (7-11)
根据能量守恒和转换定律,流体系统中能量的时间全变化率等于作用在系统上的质量力和表面力所作的功率和与外界换热率之和。则得:
[tex]\frac{d}{dt}\int \limits_{V}(e+u^{2}/2)\rho d V=\int \limits_{V}f \rho \mathbf{u} d V+\int \limits_{CA}p_{n} \mathbf{u} d A+Q[/tex] (7-12)
则能量守恒方程积分形式为:
[tex]\frac{d}{dt}\int \limits_{CV}(e+u^{2}/2)\rho d V+\int \limits_{CS}(e+u^{2}/2)\rho v_{n}d V=\int \limits_{V}f \rho \mathbf{u} d V+\int \limits_{CA}p_{n} \mathbf{u} d A+Q[/tex] (7-13)
其微分形式为:
[tex]\frac{\partial \rho T}{\partial t}+\frac{\partial \rho u T}{\partial x}+\frac{\partial \rho v T}{\partial y}+\frac{\partial \rho w T}{\partial z}=\frac{\partial}{\partial x}(\frac{\lambda}{c_{p}}\frac{\partial T}{\partial x})+\frac{\partial}{\partial y}(\frac{\lambda}{c_{p}}\frac{\partial T}{\partial y})+\frac{\partial}{\partial z}(\frac{\lambda}{c_{p}}\frac{\partial T}{\partial z})+Q[/tex] (7-14)
对于不可压缩,常物性屋内热源可简化为:
[tex]\frac{\partial T}{\partial t}+u\frac{\partial T}{\partial x}+v\frac{\partial T}{\partial y}+w\frac{\partial T}{\partial z}=\frac{\lambda}{\rho c_{p}}( \frac{\partial^{2}T}{\partial x^{2}}+\frac{\partial^{2}T}{\partial y^{2}}+\frac{\partial^{2}T}{\partial z^{2}})[/tex] (7-15)